MATH 504 HOMEWORK 2

Due Friday, September 21.
Problem 1. In $Z F^{-}$prove the Schröder-Bernstein theorem i.e. that if $A \preceq B$ and $B \preceq A$ implies that $A \approx B$.
Hint: Suppose $f: A \rightarrow B$ and $g: B \rightarrow A$ are one-to-one.Set $A_{0}=A$, $B_{0}=B, A_{n+1}=g " B_{n}, B_{n+1}=f " A_{n}, A_{\infty}=\bigcap_{n} A_{n}, B_{\infty}=\bigcap_{n} B_{n}$. Let $h(x)$ be $f(x)$ if $x \in A_{\infty} \cup \bigcup_{n}\left(A_{2 n} \backslash A_{2 n+1}\right)$. Otherwise let $h(x)$ be $g^{-1}(x)$. Show that h is well defined and $h: A \rightarrow B$ is one-to-one and onto.

Problem 2. Assume CH (but not GCH). Show that for every natural number $n>0, \omega_{n}^{\omega}=\omega_{n}$.

Problem 3. Show that for infinite cardinals $\kappa \geq \lambda$,

$$
|\{X \subset \kappa:|X|=\lambda\}|=\kappa^{\lambda} .
$$

Problem 4. Let κ be a regular uncountable cardinal, and $\left\langle C_{\eta} \mid \eta<\tau\right\rangle$ be a family of club subsets of κ for some $\tau<\kappa$. Prove that $\bigcap_{\eta<\tau} C_{\eta}$ is a club.
Problem 5. Let κ be a regular uncountable cardinal, and $f: \kappa \rightarrow \kappa$ be any function. Show that $\{\alpha<\kappa \mid(\forall \xi<\alpha)(f(\xi)<\alpha))\}$ is a club.
Problem 6. Let κ be the least inaccessible cardinal, such that κ is the κ-th inaccessible cardinal. Show that κ is not Mahlo. (Hint: Use $f(\lambda)=\alpha$ where λ is the α-th inaccessible cardinal.)

