MATH 504 HOMEWORK 2

Due Friday, September 21.

Problem 1. In ZF^- prove the Schröder-Bernstein theorem i.e. that if $A \leq B$ and $B \leq A$ implies that $A \approx B$.

Hint: Suppose $f : A \to B$ and $g : B \to A$ are one-to-one.Set $A_0 = A$, $B_0 = B$, $A_{n+1} = g^{"}B_n$, $B_{n+1} = f^{"}A_n$, $A_{\infty} = \bigcap_n A_n$, $B_{\infty} = \bigcap_n B_n$. Let h(x) be f(x) if $x \in A_{\infty} \cup \bigcup_n (A_{2n} \setminus A_{2n+1})$. Otherwise let h(x) be $g^{-1}(x)$. Show that h is well defined and $h : A \to B$ is one-to-one and onto.

Problem 2. Assume CH (but not GCH). Show that for every natural number n > 0, $\omega_n^{\omega} = \omega_n$.

Problem 3. Show that for infinite cardinals $\kappa \geq \lambda$,

$$|\{X \subset \kappa : |X| = \lambda\}| = \kappa^{\lambda}.$$

Problem 4. Let κ be a regular uncountable cardinal, and $\langle C_{\eta} | \eta < \tau \rangle$ be a family of club subsets of κ for some $\tau < \kappa$. Prove that $\bigcap_{n < \tau} C_{\eta}$ is a club.

Problem 5. Let κ be a regular uncountable cardinal, and $f : \kappa \to \kappa$ be any function. Show that $\{\alpha < \kappa \mid (\forall \xi < \alpha)(f(\xi) < \alpha))\}$ is a club.

Problem 6. Let κ be the least inaccessible cardinal, such that κ is the κ -th inaccessible cardinal. Show that κ is not Mahlo. (Hint: Use $f(\lambda) = \alpha$ where λ is the α -th inaccessible cardinal.)